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A B S T R A C T   

Spatial normalization—the process of mapping subject brain images to an average template brain—has evolved 
over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across 
patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal 
results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when 
high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of 
image alignment after automated registration. We show that the tool applied in a cohort of patients with Alz
heimer’s disease who underwent deep brain stimulation surgery helps create more accurate representations of 
the data as well as meaningful models to explain patient outcomes. The tool is built to handle any type of 3D 
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imaging data, also allowing refinements in high-resolution imaging, including histology and multiple modalities 
to precisely aggregate multiple data sources together.   

1. Introduction 

Spatial normalization is a particularly important form of image 
registration in which one (moving) brain is registered to a (fixed) pop
ulation average template. Over the last several decades, this process has 
almost exclusively been carried out using nonlinear methods with 
transforms represented by deformation or warp fields. These fields 
denote vectors mapping from each point on the moving image to the 
corresponding point in the fixed image. In the neuroimaging field, the 
Montreal Neurological Institute (MNI) space (e.g., ICBM 2009b, Fonov 
et al., 2009) has often been used as the fixed image and, accordingly, 
multiple cortical (Desikan et al., 2006; Tzourio-Mazoyer et al., 2002) 
and subcortical (Ewert et al., 2017; Xiao et al., 2017) atlases have been 
constructed in this space. Critically, since modern registration methods 
are invertible, they can be used to register such atlases back to the in
dividual brain. 

Spatial normalization is a critical step in neuroimaging analysis, as it 
has made it possible to compare findings across brains, cohorts, and 
populations. It is included as a step in common fMRI workflows (Esteban 
et al., 2019), and in more general-purpose neuroimaging pipelines 
(Gorgolewski et al., 2011). It is also a key component in the field of deep 
brain stimulation (DBS) imaging, if the aim is to make DBS electrode 
reconstructions comparable across patients (Treu et al., 2020). Unlike 
fMRI studies, where data is often smoothed by Gaussian kernels ranging 
up to 8 mm in full-width half-maximum, in DBS it is of utmost impor
tance to accurately represent minute differences in stimulation sites 
(Horn et al., 2019; Bingham & McIntyre, 2022). Normalization algo
rithms have evolved over time and have been compared with each other, 
showing a generally accurate performance in the cortex (Klein et al., 
2009), as well as subcortex (Ewert et al., 2019). 

Moving forward, the field of neuroimaging is increasingly acquiring 
high(er)-resolution and multi-modal data. This is seen in the field of 
ultra-high field fMRI, where the increasing resolution is a starting point 
for novel aims, such as modeling layer-specific activations (Bandettini 
et al., 2021). There is also an increasing interest in fusion between his
tology and postmortem resources with MRI (Edlow et al., 2019; Paquola 
et al., 2021). Finally, the DBS imaging field is trying to achieve higher 
accuracy in smaller regions of interest: resolving directional leads with 
submillimeter contact-to-contact distances (Dembek et al., 2021) and 
using ultrahigh-field MRI for planning (Forstmann et al., 2017; Isaacs 
et al., 2021), for example. 

Unfortunately, with increasing resolution, automatic registrations 
seem to become more challenging and less successful, rather than easier 
and more accurate (Edlow et al., 2019). Furthermore, brains with sub
stantial atrophy make registrations less straight-forward (Avants et al., 
2008). Additionally, for MRI, using higher field strengths also introduces 
higher field inhomogeneities and hence nonlinear distortion artifacts 
(Sumanaweera et al., 1994). 

When automatic methods fail, a promising concept is to rely on 
interactive approaches. For example, user-defined source and target 
landmarks can be selected to locally guide registrations (Sharp et al., 
2010; Wu, 2014). Additionally, Zhou et al. proposed a method to refine 
B-Spline transforms via manually dragging control points (Zhou and 
Xie, 2013). An alternative is to use masks, which restrict the registration 
to a specific region of interest (Godley et al., 2009). However—and 
unlike the field of image segmentation, where a wide range of in
teractions have been established, including classic region growing ap
proaches (Kikinis et al., 2014; Vezhnevets and Konouchine, 2005), and 
modern active learning frameworks (Diaz-Pinto et al., 2022; Nath et al., 
2021) (for a review see Zhao and Xie, 2013)—interactions in the context 
of image registration have been more limited and less common. This 

might be because of the labor-intensive nature of this task; lack of 
intuitive and easy-to-use tools; or unavailability within common image 
processing software. 

Here we introduce WarpDrive, a novel tool and method that facili
tates refinements of warpfields by manual interaction. WarpDrive also 
uses source and target landmark mapping, but rather as a backend to 
different interaction methods which we developed envisioning a more 
intuitive and user-friendly tool. While this concept does not solve cur
rent limitations of automatic registrations, it provides users with tools to 
refine their results, especially in circumscribed key areas of interest. It is 
also not intended to replace manual segmentations—the gold standard 
for patient specific analysis—but is rather conceived as a tool to accu
rately link patient-specific and normative spaces. 

We see particular benefit for research questions that study localized 
brain regions (such as layer-fMRI analyses, studies of hippocampal 
subfields or focal brain stimulation). Indeed, our method has recently 
been applied in a study within the aforementioned, most challenging 
scenario: DBS for Alzheimer’s disease (AD) (Ríos et al., 2022), where 
brain atrophy is substantial but millimeters of registration accuracy 
matter. In it, Ríos et al. found an optimal stimulation site that robustly 
explained variance in clinical improvements across 46 patients. While 
the Ríos et al. study applied WarpDrive, a thorough methodological 
write-up and investigation of its effects has not been included. 

Here, we revisit the same dataset to further characterize the impact 
WarpDrive had on the results of the analysis. Furthermore, we apply 
WarpDrive to another set of images from patients featuring brain atro
phy on MRI scans (without DBS). Finally, we provide examples of 
WarpDrive refinements in registrations of high-resolution images into 
standard space; registrations of template space to a histological slice; 
and group registrations to create a brain template. 

2. Methods 

2.1. WarpDrive toolbox 

We developed the WarpDrive toolbox for manual refinement of 
misalignments between source and target spaces after image registra
tion. One of WarpDrive’s novel features is the user interface and logic 
through which landmarks are defined. Specifically, WarpDrive uses a set 
of corrections, where each correction is comprised by one or more 
source landmarks, their corresponding target landmarks, and a radial 
kernel bandwi,which will determine the influence of the correction on 
the surrounding displacement field. 

We next introduce how source and target landmarks can be placed 
using the three tools we developed for this application; and then how 
they translate to the output displacement field. We refer to Fig. 1 for an 
illustration of the tools, and to supplementary material for an overview 
of the user interface. 

2.1.1. WarpDrive tools  

- Point to point. This tool places a single source landmark with the first 
click and the corresponding target landmark with the second.  

- Draw. By clicking and dragging the user can draw a freeform line, 
from which equidistant points are sampled to define source land
marks. In one mode of operation, the user can then draw another 
line, which will be again sampled defining the corresponding target 
landmarks. In another mode, when anatomical segmentation models 
are present, the target landmarks are sampled from the closest seg
mentation model. This mode can be helpful when recognizing 
structure outlines that do not precisely match an atlas model after 
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image normalization (e.g., there is an offset between the lateral 
border of a brain nucleus on the MRI and its corresponding border in 
the brain atlas). The user can draw the outlines in the image, and the 
corresponding source and target landmarks will automatically be 
defined, saving the user from multiple mouse interactions.  

- Smudge. In this tool, by clicking and dragging, the user is updating a 
temporary displacement field (u) following cursor displacement in 
real time. Specifically, 

ut( r→) = ut− 1( r→)+ (‖ r→Ct− 1 − r→Ct‖)× ψ( r→ − r→Ct), where r→Ct is 
the position of the cursor at a given time t, and ψ is the gaussian 
radial basis function ψ(r) = e− (rε)2 . When the interaction finishes, 
source landmarks are sampled along the trajectory in which the 
cursor moved; and target landmarks are defined by transforming the 
source landmarks with the temporary displacement field. Interaction 
points are not required to be aligned to the directions in which the 
image was sampled along. Rather, slice view orientations can be 
arbitrarily set, and the (x, y) in-plane position of interaction is 
transformed to it’s respective (r, a, s) spatial coordinates and (i, j, k)
voxel indexes, where the warp modifications are embedded. This 
type of interaction provides intuitive feedback since the temporary 
displacement field is applied to the image in real time, providing a 
preview visualization of how the output will look like. 

2.1.2. Displacement field computation 
These tools provide means of placing source and target landmarks, 

which are fed into a registration algorithm to compute the output 
displacement field. For this, we base our implementation on the Plasti
match algorithm, published by Shusharina and Sharp (Shusharina and 
Sharp, 2012). Next, we introduce how the deformation field is calcu
lated using the same notation as them, making emphasis on the novel 

additions, and refer to their publication for details on more extensive 
mathematical formulation. 

The value at each position r→ of the displacement field u is calculated 
as: 

u( r→) =
∑

p=x,y,z
e→p

∑M

i=1
αip ψi( ‖ r→− r→Ti ‖ )

Where e→p is the unit vector along the p-axis; M is the number of land
marks; αip coefficients are determined such that corresponding source 
( r→S) and target ( r→T) landmarks match: r→Si + u( r→) = r→Ti (see Shush
arina and Sharp, 2012 for more details); and ψ i is the gaussian radial 
basis function ψ i(r) = e− (rεi)

2
. 

Here, novel to this implementation, the radial kernel bandwidth εi is 
specific for each correction (and therefore for each landmark that be
longs to the correction). This allows to have multiple corrections that 
have variable influence on the output displacement field. The user 
manually sets this bandwidth value via a slider, or keyboard shortcuts; 
and a sphere outline of this radius is shown in the viewers during the 
interactions to indicate the area being influenced. 

2.1.3. WarpDrive snap 
Apart from the tools that allow for manual interactions with the 

displacement field, we also included a feature to locally improve the 
alignment between source and target images in an automated way. 
Specifically, with the Snap operation, an automated registration routine 
is run after a correction restricting the registration to the place where the 
interaction was done. Then, the output is applied to the target points 
belonging to the respective correction. This allows for a semi-automated 
correction, where the potentially misplaced target points are 

Fig. 1. WarpDrive tools overview. WarpDrive features different tools for the user to interact with and refine the normalization. In this figure the tools are illus
tratively explained. With the point-to-point tool (top left) the user can place source and target points to guide refinement locally. When drawing (center left), the user 
draws an outline of a structure of interest which is misaligned with a target structure. Sampled points along the line are corresponded to the nearest atlas structure. 
When smudging (bottom left), the user clicks and drags to displace the image along the pointer movement. All these corrections will result in a new displacement 
field (center right) which is stacked on top of the original transform (top right), resulting in a new transform (bottom right). The WarpDrive correction is applied to 
the result of a default Lead-DBS normalization of the subject’s images (7T 0.12 mm in-plane resolution; https://figshare. 
com/articles/dataset/BWH_06_2022_7T/20,102,912). Atlas outlines, from Ewert et al. (2017): rn: Red nucleus; stn: Subthalamic nucleus; gpi: Globus pal
lidus internus. 
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automatically adjusted following an automated process. 

2.2. ADNI cohort 

118 participants (mean age: 75 ± 7.8 years; 56 females) from the 
Alzheimer’s disease Neuroimaging Initiative (ADNI) database (adni.lon 
i.usc.edu) were retrieved. This cohort was defined based on participants 
for which both Harmonized Hippocampal Protocol (HarP) manual hip
pocampus segmentations (Boccardi et al., 2015), as well as Spatial 
Pattern of Abnormality for Recognition of Early Alzheimer’s disease (SPA
RE-AD) scores (Davatzikos et al., 2009) were available. 

Briefly, the SPARE-AD scores constitute an imaging derived measure 
of AD-like brain atrophy. More positive values indicate brains with 
increasing atrophy while more negative values indicate normal brain 
characteristics (Davatzikos et al., 2009). 

As for the HarP protocol, it specifies a method for manual segmen
tation of the hippocampus (Boccardi et al., 2015) which was previously 
applied on the aforementioned ADNI cohort (Boccardi et al., 2015). The 
HarP protocol has been also applied on the MNI space to provide 
normative hippocampal segmentations (Wolf et al., 2017), which were 
used here to derive automatic atlas-based segmentations (see section 
below). 

2.3. Atlas-based segmentation 

The ADNI cohort was normalized using Advanced Normalization 
Tools (ANTs; https://stnava.github.io/ANTs/), without further manual 
refinement, using default parameters as implemented in the Lead-DBS 
toolbox (https://www.lead-dbs.org/). Based on the resulting warp
field, the template HarP hippocampus segmentation was transformed 
from MNI to patient space to derive an automatic hippocampus seg
mentation. In this study we refer to a segmentation derived from 
transforming an atlas structure to patient space as atlas-based or 
normalization-based segmentation. Similarities between manual versus 
normalization-based segmentations were quantified by calculating DICE 
scores (Dice, 1945). These were then correlated with the SPARE-AD 
brain atrophy scores. 

We then applied WarpDrive on the entire ADNI cohort and obtained 
a new set of normalization-based segmentations and their respective 
DICE scores. We then compared the DICE distribution for the automated 
versus the WarpDrive based one considering the whole cohort; and only 
the bottom and top 25 % of the cohort when sorted by the SPARE-AD 
scores. With this analysis we wanted to distinguish the effects of 
WarpDrive across more vs. less atrophied brains. 

2.4. Alzheimer’s disease deep brain stimulation cohort (AD-DBS) 

46 patients—from across seven international centers—with mild AD 
diagnosis were included in this study (patient mean age: 67 ± 7.9 years; 
23 females). This patient cohort has been well characterized in a prior 
retrospective trial (Ríos et al., 2022), to which we refer for details on 
patient selection and additional information. Briefly, all 46 patients 
underwent DBS targeting the descending columns of the fornix and were 
clinically evaluated using the ADAS-cog 11 score before and one year 
after surgery. Pre- and post-operative imaging, together with post
operative stimulation settings were retrieved for all patients, including 
stimulation amplitude, frequency, and active contacts. 

2.5. Lead-DBS processing pipeline 

The AD-DBS cohort was processed using the Lead-DBS toolbox 
including the following steps in the pipeline: (i) pre- and post-operative 
image registration; (ii) patient to template image normalization; (iii) 
brain-shift correction; (iv) DBS electrode reconstruction; and (v) electric 
field modeling estimation from stimulation settings. For in-depth details 
on how each of these steps were applied in this dataset we refer to the 

original publication (Ríos et al., 2022). 
Particularly, the normalization step was carried out using default 

settings in Lead-DBS (Ewert et al., 2019), which builds on top of an 
optimized multi-spectral registration implemented in ANTs (Avants 
et al., 2008). The specific parameters that were used are reproduced in 
an example antsRegistration call in the supplementary material. 
Following ANTs-based normalization, scans transformed into MNI space 
were refined using WarpDrive, leading to a second set of results 
(ANTs+WarpDrive). To do so, Ríos et al. employed a ground-truth 
high-resolution atlas template of the human fornix (Neudorfer et al., 
2020) for WarpDrive based refinements. 

We then assessed whether these refinements further optimized the 
registration by transforming native images, measuring their similarity 
against the MNI template, and comparing between ANTs and 
ANTs+WarpDrive groups. While before we used DICE to evaluate sim
ilarity in segmentation (binary) images, for this analysis, to evaluate 
similarity in gray-scale images, we used the mutual information metric 
(Hermosillo et al., 2002), which was also used as the objective function 
by the registration algorithm during the optimization process. 

Another result we studied was the effect WarpDrive had on the 
clustering of electrode contacts. For this, we measured the distance from 
each contact to the average contact position in their respective hemi
sphere. We then compared the distributions of distance to mean active 
contact using a paired t-test between the ANTs and ANTs+WarpDrive 
groups. It should be noted that this is an indirect measure of registration 
improvement, since normalization only accounts for part of the vari
ability of electrode dispersion, apart from variance introduced by sur
gical planning, frame accuracy and bias introduced by electrode 
reconstructions. 

2.6. Lead-DBS sweetspot explorer 

Following refinement, the cohort was then loaded into the Lead-DBS 
Sweetspot Explorer (Neudorfer et al., 2023), where the magnitude of 
simulated electric fields was correlated in a voxel-wise manner with 
improvements in ADAS-cog 11 scores across patients. This led to a 
correlation map in MNI space (i.e., sweetspot) where positive voxel 
values indicated a positive relationship between electric field magni
tudes and beneficial clinical outcomes. 

Ríos et al. evaluated their derived sweetspot model using k-fold 
cross-validations: improvement scores for iteratively left-out patients 
were estimated based on the similarities between their electric fields and 
the sweetspot (which had been iteratively calculated based on included 
patients). The same was done also in a circular analysis, namely, im
provements for all patients were estimated using the sweetspot built 
from all data. The performance of this model was then assessed by 
evaluating the association between estimated and empirical improve
ments. In the present study we repeated the analysis performed by Ríos 
et al., but this time for the purely automated registration (ANTs) group. 
The circular analysis was employed, as model performance was not the 
essence of this study, but rather the comparison between the groups 
(ANTs vs. ANTs+WarpDrive). In essence, this circular analysis estimates 
how much variance in clinical improvements the sweetspot map can 
explain across the entire dataset. For this analysis, significance tests 
were performed using Monte Carlo permutations (Nichols and Holmes, 
2002). 

2.7. Comparison against state-of-the-art registration strategies 

While our main focus was to quantify the impact of manual re
finements on top of the automated normalization results (based on 
ANTs), we wanted to probe how well recently introduced deep learning 
based approaches would perform in comparison. Thus, we repeated our 
main analyses using EasyReg (Iglesias, 2023) and compared the 
outcome measures with the ones from ANTs and ANTs+WarpDrive. 
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2.8. Additional qualitative analysis 

We next performed additional qualitative analysis showcasing the 
usability of WarpDrive for other applications. First, we showcase the 
registration refinement of an ultra-high resolution postmortem brain 
template (100 µm isotropic resolution; Edlow et al., 2019) with the MNI 
template within the fornix region, demonstrating—in conjunction with 
the AD-DBS analysis—the use of WarpDrive to derive accurate repre
sentations of multimodal data aggregation. 

Second, we demonstrate feasibility of using WarpDrive to refine the 
registration to a 2D histological slice. In particular, we refined the fit of 
the subthalamic nucleus from MNI space to a 1 µm BigBrain slice 
(Amunts et al., 2013) starting from an optimized mapping between the 
two spaces (Xiao et al., 2019). 

Third, we applied WarpDrive during the process of creating an atlas 
template from 12 subjects (age range 31–40) that were scanned at 7T 
within the Amsterdam Ultra-high field adult lifespan database (AHEAD; 
Alkemade et al., 2020). First, we created a template in fully automatized 
fashion, and then refined it, focusing on the subthalamic nucleus as our 
region of interest. We employed the atlas creation routine distributed in 
the ANTs installation (antsMultivariateTemplateConstruction2) using 
SyN transforms. Then, we manually refined registrations of the images 
to the template using WarpDrive, and particularly focused on accuracy 
of the subthalamic nucleus area. 

Finally, we applied WarpDrive in an abdomen dataset from the 2021 
Learn2Reg Challenge (Clark et al., 2013; Hering et al., 2023). We took 
the 8 training cases from the first task of the challenge (CT-MR 
thorax-abdomen intra-patient registration) and we did intra-patient 
registration of the CTs to MRs using ANTs quick SyN approach with 
neighborhood cross correlation metric (Avants et al., 2008). Then, we 
applied WarpDrive to the resulting deformation field, focusing on the 

liver, fixing misalignments between MR and CT images. We then 
computed the DICE and 95 % Hausdorff distance (Huttenlocher et al., 
1993) metrics between the transformed CT liver labels (based on ANTs 
and ANTs+WarpDrive) and their corresponding MR labels. 

3. Results 

3.1. WarpDrive toolbox 

One of the main outputs of this study is the WarpDrive toolbox which 
we developed to manually correct mismatches after image normaliza
tion. The toolbox is made open-source and accessible through a 3D Slicer 
(https://www.slicer.org/; Fedorov et al., 2012; Kikinis et al., 2014) 
extension as well as within the Lead-DBS toolbox. It is composed of a set 
of tools that allow the user to interact with the displaced image and 
manually improve its alignment to template space (Fig. 1; additional 
details in supplementary material). 

3.2. Automatic segmentation of atrophied brains can be improved by 
WarpDrive 

First, we wanted to assess the necessity of applying WarpDrive, 
especially to brains with substantial atrophy. To do so, we retrieved a 
subset of the ADNI dataset in which SPARE-AD scores (which quantify 
AD-like brain atrophy) as well as manual segmentations of the hippo
campus were available. Manual segmentations were then compared to 
automated (atlas-based) segmentations using the DICE score. Resulting 
DICE coefficients significantly correlated with the degree of atrophy 
represented by SPARE-AD scores (Pearson R = − 0.61; p = 3e − 13; 
Fig. 2A). These data present an association between brain atrophy and 
the accuracy of automatic segmentations: with increasing atrophy, the 

Fig. 2. Using WarpDrive to refine the hippocampus in brains with atrophy patterns. A Relationship between the similarities between manual versus atlas-based 
segmentations and the SPARE-AD value (measure of AD-like brain atrophy). A significant relation between the two is seen: as brain atrophy increases, the accu
racy of the atlas-based segmentation worsens (Pearson R = − 0.61; p = 3e − 13). Using WarpDrive to refine the normalization leads to a higher accuracy of the atlas- 
based segmentation (paired t-test T = 11.3, p = 1e − 20), with a greater improvement seen in the 25 % more atrophied brains (paired t-test T = 7.5, p = 4e − 8) 
with respect to the 25 % more normal brains (paired t-test T = 5.7, p = 4e − 6) (B). An example is shown in C, where the refined version matches better the manual 
segmentation (the user was blinded to the manual segmentations while performing the refinements). *p < 0.05, **p < 1e − 6 for paired t-tests. 
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accuracy declines. Especially the cases with high atrophy are potentially 
good candidates for WarpDrive to assist after the automatic registration. 
Indeed, after refining the ADNI cohort we saw a significant improvement 
of the DICE scores across the entire dataset (paired t-test T = 11.3, p =
1e − 20), with a more pronounced improvement when only taking the 
25 % more atrophied brains (paired t-test T = 7.5, p = 4e − 8) as 
compared to the 25 % more normal brains (paired t-test T = 5.7, p = 4e 
− 6) (Fig. 2B). Critically, here, the user was blinded to the manual 
segmentation while performing the refinements. 

3.3. WarpDrive refinements optimize registration accuracy in DBS 
patients 

In the AD-DBS cohort published by Ríos et al., refined images were 
more similar to the template than without applying refinements, as 
measured by the mutual information registration metric (paired t-test T 
= 4.7; p = 2e − 5; Fig. 3A). This translated to a more accurate repre
sentation of patient data in MNI space and vice versa (e.g., transforming 
electrode placements to template space, or transforming atlas structures 
to native space, as in the highlighted example in Fig. 3). 

3.4. Effects on electrode contact placement 

The refined version of the displacement fields applied to active deep 
brain stimulation electrode locations translated to more clustered 

electrode positions in MNI space, as measured by comparing the dis
tances between each active contact to their average location (Fig. 4). 
Better registration leading to higher clustering is expected, since sur
geons attempt to target the same brain regions in each patient. Note the 
differences in contact position of the ventrally misregistered contacts 
and their relationship to the fornix following WarpDrive refinement. 

3.5. WarpDrive as a key component in deep brain stimulation modeling 

So far, we could demonstrate that WarpDrive helped create more 
accurate mappings between patient and template spaces. When aggre
gating these data and continuing ahead the processing pipeline for 
sweetspot analysis, WarpDrive proved to be a key step in the workflow. 
Fig. 4 shows the results reported by Ríos et al., which used WarpDrive 
refinement. To evaluate differences in sweetspot location with and 
without refinement, we repeated the same analysis using automated 
registration (ANTs) alone (omitting WarpDrive refinement). The Ríos 
et al. analysis shows a more specific sweetspot wherein stimulation is 
associated with improvement in ADAS-cog 11 score (Spearman R =

0.48; p = 0.001). This relationship does not hold true for the auto
mated analysis using ANTs alone (Spearman = − 0.03; p = 0.8). 

3.6. Modern registration techniques don’t outperform WarpDrive 

After re-running the AD-DBS analysis with EasyReg, we found that it 

Fig. 3. Surrogate measures of registration improvement after using WarpDrive. Panel A shows the impact of WarpDrive in the mutual information metric: using 
WarpDrive, the registration accuracy is further optimized, reaching a higher mutual information value (paired t-test T = 4.7; p = 2e − 5). The refined transform also 
impacts how atlas structures map to patient space, as shown by an exemplar case in the top center. Panel B shows the impact of WarpDrive in the dispersion of 
warped active DBS electrode contacts placement: after WarpDrive refinemet, the contacts are more clustered together (measured by the distance from the contacts to 
the mean contact coordinate; paired t-test T = 4.0; p = 1e − 4). The bottom row illustrates this by showing the active contacts in MNI space after transforming them 
using automated registration (ANTs; left); after additional refinement (ANTs+WarpDrive; right); and their respective displacement (center). The mean contact 
coordinates are represented as white spheres in the figure. fx: Fornix, from Neudorfer et al., 2020; Background brain slices defined by the postmortem 100 µm 
template (Edlow et al., 2019). *p < 0.05 for paired t-tests. 
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had the lowest distribution of mutual information values (paired t-test vs 
ANTs: T = 3.8, p = 4e − 4; and vs ANTs+WarpDrive: T = 5.8, p = 6e −
7; Fig. 5A); and greater dispersion of contact location as compared to 

ANTs+WarpDrive (paired t-test T = 4.2, p = 6e − 5), while unsignifi
cant difference with respect to ANTs (paired t-test T = 0.3, p = 0.7; 
Fig. 5B). As for the sweetspot analysis, the cohort processed with 

Fig. 4. Sweetspot analysis comparison with and without WarpDrive. Ríos et al. applied WarpDrive to refine the normalization of the images to template space and 
carried out a sweetspot analysis defining a region associated with better outcome after surgery (Spearman R = 0.48; p = 0.001), shown in the bottom panel. 
Repeating the same analysis when omitting the WarpDrive refinement step does not lead to significant associations in the analysis (Spearman = − 0.03; p = 0.8). 
The stimulation volume of an example responder patient is shown in the slices (and marked in scatter plots) highlighted by yellow outlines. In the automated 
analysis, their stimulation volume does not intersect with the sweetspot region, after application of WarpDrive, it does. The sweetspot is represented with red colors 
for association with beneficial outcome and blue colors for the opposite relationship. Background brain slices are defined by the postmortem 100 µm template 
(Edlow et al., 2019). 

Fig. 5. Additional comparison with novel deep learning based normalization approach. After re-doing the AD-DBS analysis with EasyReg (Iglesias, 2023), this 
method showed: (A) lowest mutual information metric score between the normalized and template images; (B) greater dispersion of active contact placement 
compared to ANTs+WarpDrive, while unsignificant difference with ANTs; and (C) a positive, while not significant, association between sweetspot score and clinical 
improvement (Pearson R = 0.24, p = 0.8). *p < 0.05, **p < 1e − 6 for paired t-tests. 
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EasyReg showed an unsignificant positive association between scores 
and clinical improvement (Pearson R = 0.24, p = 0.8; Fig. 5C). 

3.7. Qualitative analysis results 

WarpDrive can assist in the process of aligning high resolution 
templates to the same reference template used during group spatial 
normalization. A precise alignment is crucial to create visualizations of 
regions of interest that provide refined and more detailed anatomical 
insight, going beyond what can be seen on typical MNI templates. We 
show an example in Fig. 6, where we refine the 100 µm postmortem 
template (Edlow et al., 2019) alignment to MNI space. 

WarpDrive can also be used to refine registrations of volumes to 
histological slices: we demonstrate this application with a 1 µm slice of 
the Bigbrain dataset (Amunts et al., 2013) to which a common MNI 
template had been registered before (Xiao et al., 2019). We manually 
refined this registration using WarpDrive. Particularly, the increasing 
resolution made some discrepancies in the alignment more evident, 
which we were able to adjust (supplementary Fig. 1). Furthermore, 
WarpDrive was also able to assist in the atlas creation process, where 
focusing the refinements on a target region of interest translated to 
clearer and crisper borders of the subthalamic nucleus (supplementary 
Fig. 2). Finally, we show the usability of WarpDrive in the context of 
abdomen registration, improving the alignment of intra-patient multi
modal images focusing on the liver (supplementary Fig. 3). 

4. Discussion 

We propose a method for manual refinement of deformation fields 
based on user interactions with images. The tool provides visual feed
back about the alignment of images in conjunction with atlases and 
parcellations in MNI space. This is a step forward in the field of spatial 
normalization, which has been around for over two decades and has 
achieved excellent results in many contexts, but sometimes, refinements 
are still critical to achieve an accurate correspondence between images. 
Without such a tool, when automatic algorithms fail (or produce poor 
fits in specific regions), the user is often left without choices to address 
the issue. WarpDrive closes this gap, i.e., constitutes a tool that allows 
interaction with normalization results following application of auto
mated registration routines. 

It should be noted that since WarpDrive starts from an initial trans
form, this first alignment impacts the usability of the tool: if the dis
crepancies are too big, WarpDrive is likely not the best tool to manually 
correct them; on the other end, if the alignment is already perfect, the 
application of WarpDrive is unnecessary. In other words, WarpDrive was 

designed for typical registration results we often see in neuroimaging, 
which are overall of decent fit but may require small adjustments here or 
there. 

We studied an AD-DBS cohort, which is characterized by significant 
levels of atrophy and regions of interest are particularly small. When 
analyzing such datasets, the key question is to resolve the small differ
ences in electrode placements with high accuracy, in order to contrast 
stimulation sites of responders with the ones of non-responders (Treu 
et al., 2020). However, since all electrodes are targeting the same brain 
region, and given the levels of atrophy, these analyses range among the 
most challenging applications of spatial normalizations. While the 
original paper by Ríos et al. had used WarpDrive already, the report did 
not quantify its impact on results. The present manuscript addressed this 
limitation by comparing results between analyses carried out with and 
without the additional WarpDrive step. This showed a strong impact of 
the WarpDrive method on the result reported by Ríos et al., demon
strating how critical this processing step had been. 

Moreover, we provide evidence for the utility of WarpDrive in cor
recting registrations of brains with substantial morphological changes, 
specifically atrophy in the context of neurodegeneration. We show that 
spatial normalization (after automated processing without additional 
refinement) negatively correlates with the degree of atrophy and that 
applying WarpDrive to atrophied brains can reduce this bias. 

Following this direction, we consider WarpDrive a tool to assist in 
creating accurate spatial representations of data. Not only can patient 
imaging be better aligned to an average reference brain. Just as much, 
other high-resolution resources can be precisely registered to template 
(or patient) spaces (Al-Fatly et al., 2023). Our examples of refinements 
in the 100 µm postmortem template (Edlow et al., 2019) and 1 µm 
BigBrain slice (Amunts et al., 2013) showcase WarpDrive’s utility for 
such cases. 

While only qualitatively presented here, these concepts could be 
further explored in the growing field of histology to MRI registration, 
bridging micro to macro scales (Adler et al., 2014; Amunts et al., 2013; 
Iglesias et al., 2018). Another example of application we foresee is in 
fMRI studies that focus on specific neuroanatomical subregions of small 
scale (such as activations within hippocampal subfields or layer-specific 
activation studies). Here, WarpDrive could help refine registrations of 
regions of interest to potentially enhance the power of statistical ana
lyses on the group level, or to better compare anatomical details of brain 
activations. WarpDrive may be readily applied to non-human or inani
mate imaging applications, and although these concepts are not studied 
here, we foresee great potential for WarpDrive in these applications as 
well. 

Finally, as the applications of WarpDrive grow, we also envision 

Fig. 6. WarpDrive can assist in creating accurate representations of data in template space. In this figure we show the default (center) and WarpDrive-refined (right) 
version of the 100 µm postmortem template (Edlow et al., 2019). We also include the active contacts and their mean (white dot) mapped to a sagittal slice (similarly 
without and with application of WarpDrive). This way, multiple data can be precisely transformed to a template space and create accurate representations of them. 
Atlas outlines, from Neudorfer et al., 2020: ac: Anterior commissure; fx: Fornix; mmb: Mammillary bodies. 
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improvements in the tool itself. While in this work we proposed different 
ways of interactions to apply corrections to a given displacement field, 
further interaction modes or enhancements to the present ones could 
make WarpDrive more versatile and user-friendly. For example, a tool 
where the user could radially shrink or expand the warpfield locally 
could be useful for some applications. Furthermore, drawing with 
assistance could be convenient as well, where the outline drawn auto
matically follows contours, as it does in the magnetic selection tool in 
common photo editing software. Finally, it would be interesting to 
investigate how different registration metrics perform when using the 
Snap mode—and perhaps at some point delegate this operation to an 
active learning model, which could learn from the user’s corrections and 
feedback. 

4.1. Limitations 

While WarpDrive is a potentially powerful method, it introduces 
observer bias to a process that had been observer-independent before. 
This might be counterintuitive when the goal is to ensure an automatic 
processing pipeline for image analyses. But the automation should be 
balanced with the accuracy of the achieved results. Furthermore, while 
not explored here, it is possible to apply WarpDrive as an intermediate 
step. Within Lead-DBS, it is implemented in such a way that automatic 
registrations can first be refined using WarpDrive. Then, the automatic 
algorithm (ANTs) can be run again, starting off from the refined solu
tion. Technically, this process could even be iteratively repeated as often 
as desired (i.e., handing off the registration from algorithm to human 
and back), albeit it remains unclear, whether this would lead to superior 
results. The introduced Snap feature is also a semi-automatized routine 
which could objectively adjust the corrections. 

Second, WarpDrive alone will not necessarily improve the corre
spondence of images. Since it is applied by a user, the user requires 
anatomical knowledge and methodological insights into neuroimaging. 
In other words, it is possible to make results worse using WarpDrive. The 
quality of the images is also an essential factor of impact on the quality 
of WarpDrive refined results. Obviously, it is important to see and 
distinguish the structures of interest to be able to refine their mapping. 

Third, the process can introduce so-called “high frequency de
formations”, i.e. “swirling” or strong distortions. These could be cor
rected for by smoothing the warpfield and/or by re-applying the 
registration routine taking the refined transform as starting point. 
However, further work is needed to clarify limitations of these concepts, 
depending on the field of application (different for fMRI, histology, DBS, 
etc.). Hence, we must emphasize that, while potentially powerful, 
WarpDrive is a manual method that should be applied by expert neu
roimagers on high quality data and with the necessary anatomical 
knowledge. 

Finally, WarpDrive is not suited to refine whole-brain registrations. 
While technically possible (one could iteratively refine the entire brain), 
it would be a very labor-intensive process. Rather, the key application 
we see is to refine certain areas of interest. DBS imaging, layer-specific 
fMRI or registrations of smaller tissue blocks are clear applications in 
which WarpDrive could be useful. Instead, using the tool to refine reg
istrations that are significantly off at various locations throughout the 
brain is not advised. 

5. Conclusion 

We introduce WarpDrive, a method to refine pair-wise nonlinear 
registrations between images. While in this study we focus mainly on 
human brain MRI images, the tool is not tied to a specific modality or 
species and can be applied to any type of 3D imaging data. It can be 
particularly useful to refine region-specific registrations in the domains 
of ultra-high-field imaging, cross-modality registrations, and high- 
fidelity neuroimaging, such as deep brain stimulation. Indeed, we 
show how WarpDrive can help create accurate anatomical 

representations and models of multimodal imaging data in an AD-DBS 
cohort. The tool is openly available in form of a 3D Slicer extension 
and within the Lead-DBS software. 

Data availability 
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result figures can be accessed here: https://github.com/simono 
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EA2/186/18). 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 

A.H. reports a relationship with Boston Scientific Corporation that 
includes: speaking and lecture fees. L.A. reports a relationship with 
Boston Scientific Corporation that includes: consulting or advisory. L.A. 
reports a relationship with Medtronic that includes: consulting or 
advisory. K.F. reports a relationship with Medtronic that includes: 
consulting or advisory. K.F. reports a relationship with Boston Scientific 
Corporation that includes: consulting or advisory. K.F. reports a rela
tionship with Abbott that includes: funding grants. K.F. reports a rela
tionship with Functional Neuromodulation that includes: funding 
grants. D.W. reports a relationship with Functional Neuromodulation 
that includes: funding grants. D.W. reports a relationship with Avid Lily 
that includes: funding grants. D.W. reports a relationship with Merck 
that includes: funding grants. D.W. reports a relationship with Jannsen 
that includes: consulting or advisory. D.W. reports a relationship with 
GE Healthcare that includes: consulting or advisory. D.W. reports a 
relationship with Biogen that includes: consulting or advisory. D.W. 
reports a relationship with Neuronix that includes: consulting or advi
sory. S.S. reports a relationship with Elsai that includes: consulting or 
advisory. S.S. reports a relationship with Lilly that includes: consulting 
or advisory. S.S. reports a relationship with Roche that includes: 
consulting or advisory. S.S. reports a relationship with Novartis that 
includes: consulting or advisory. S.S. reports a relationship with Biogen 
that includes: consulting or advisory. G.S. reports a relationship with 
NIH that includes: funding grants. M.S. reports a relationship with 
Allergan that includes: consulting or advisory. M.S. reports a relation
ship with Biogen that includes: consulting or advisory. M.S. reports a 
relationship with Roche that includes: consulting or advisory. M.S. re
ports a relationship with Cortexyme that includes: consulting or advi
sory. M.S. reports a relationship with Bracket that includes: consulting 
or advisory. M.S. reports a relationship with Brain Health Inc that in
cludes: consulting or advisory. M.S. reports a relationship with uMethod 
Health that includes: consulting or advisory. C.L. reports a relationship 
with Functional Neuromodulation that includes: funding grants. C.L. 
reports a relationship with Avanir that includes: funding grants. C.L. 
reports a relationship with Eli Lily that includes: funding grants. C.L. 
reports a relationship with NFL Benefits Office that includes: funding 
grants. M.O. reports a relationship with NIH that includes: funding 

S. Oxenford et al.                                                                                                                                                                                                                               

https://adni.loni.usc.edu/
https://github.com/simonoxen/WarpDrive_Supplementary
https://github.com/simonoxen/WarpDrive_Supplementary
https://github.com/netstim/SlicerNetstim
https://github.com/netstim/SlicerNetstim
https://github.com/netstim/leaddbs
https://github.com/netstim/leaddbs


Medical Image Analysis 91 (2024) 103041

10

grants. M.O. reports a relationship with Tourette Association of America 
Grant that includes: funding grants. M.O. reports a relationship with 
Parkinson’s Alliance that includes: funding grants. M.O. reports a rela
tionship with Smallwood Foundation that includes: funding grants. M.O. 
reports a relationship with Parkinson’s Foundation Medical Director 
that includes: consulting or advisory. M.O. reports a relationship with 
Books4Patients that includes: consulting or advisory. M.O. reports a 
relationship with American Academy of Neurology that includes: 
consulting or advisory. M.O. reports a relationship with Peerview that 
includes: consulting or advisory. M.O. reports a relationship with 
WebMD Medscape that includes: consulting or advisory. M.O. reports a 
relationship with Mededicus that includes: consulting or advisory. M.O. 
reports a relationship with Movement Disorders Society that includes: 
consulting or advisory. M.O. reports a relationship with Taylor and 
Francis that includes: consulting or advisory. M.O. reports a relationship 
with Demos that includes: consulting or advisory. M.O. reports a rela
tionship with Robert Rose that includes: consulting or advisory. M.O. 
reports a relationship with Medtronic that includes: non-financial sup
port. A.L. reports a relationship with Medtronic that includes: funding 
grants. A.L. reports a relationship with Functional Neuromodulation 
that includes: funding grants. A.L. reports a relationship with Medtronic 
that includes: consulting or advisory. A.L. reports a relationship with St. 
Jude that includes: consulting or advisory. A.L. reports a relationship 
with Boston Scientific that includes: consulting or advisory. A.L. has 
patent #US Patent 8346,365 licensed to Functional Neuromodulation. 

Data availability 

Anonymized derivatives together with code to recreate the result 
figures can be accessed here: https://github. 
com/simonoxen/WarpDrive_Supplementary. 

Acknowledgements 

Part of this study was presented and worked on during the 35th and 
38th NA-MIC Project Weeks (Kapur et al., 2016). We would like to thank 
the NA-MIC community, specially to Dr. Andras Lasso for the help and 
discussions on 3D Slicer modules implementation. 

A.H. was supported by the German Research Foundation (Deutsche 
Forschungsgemeinschaft, 424778381 – TRR 295), Deutsches Zentrum 
für Luft- und Raumfahrt (DynaSti grant within the EU Joint Programme 
Neurodegenerative Disease Research, JPND), the National Institutes of 
Health (R01 13478451, 1R01NS127892–01, 2R01 MH113929 & 
UM1NS132358) as well as the New Venture Fund (FFOR Seed Grant). B. 
H. was supported by a scholarship from the Einstein Center for Neuro
sciences Berlin. 

Data collection and sharing for this project was funded by the Alz
heimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of 
Health Grant U01 AG024904) and DOD ADNI (Department of Defense 
award number W81XWH-12–2–0012). ADNI is funded by the National 
Institute on Aging, the National Institute of Biomedical Imaging and 
Bioengineering, and through generous contributions from the following: 
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Founda
tion; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb 
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, 
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and 
its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO 
Ltd.; Janssen Alzheimer Immunotherapy Research & Development, 
LLC.; Johnson & Johnson Pharmaceutical Research & Development 
LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, 
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharma
ceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 
Pharmaceutical Company; and Transition Therapeutics. The Canadian 
Institutes of Health Research is providing funds to support ADNI clinical 
sites in Canada. Private sector contributions are facilitated by the 

Foundation for the National Institutes of Health (www.fnih.org). The 
grantee organization is the Northern California Institute for Research 
and Education, and the study is coordinated by the Alzheimer’s Thera
peutic Research Institute at the University of Southern California. ADNI 
data are disseminated by the Laboratory for Neuro Imaging at the Uni
versity of Southern California. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.media.2023.103041. 

References 

Adler, D.H., Pluta, J., Kadivar, S., Craige, C., Gee, J.C., Avants, B.B., & Yushkevich, P.A. 
(2014). Histology-derived volumetric annotation of the human hippocampal 
subfields in postmortem MRI. 84, 505–523. 10.1016/j.neuroimage.2013.08.067. 

Al-Fatly, B., Giesler, S.J., Oxenford, S., Li, N., Dembek, T.A., Achtzehn, J., Krause, P., 
Visser-Vandewalle, V., Krauss, J.K., Runge, J., Tadic, V., Bäumer, T., Schnitzler, A., 
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